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ABSTRACT

This study proposes an integrated diagnostic framework based on atmospheric circulation regime spatial patterns

and frequencies of occurrence to facilitate the identification of model systematic errors across multiple time scales. To

illustrate the approach, three sets of 32-yr-long simulations are analyzed for northeastern North America and for the

March–May season using the Geophysical Fluid Dynamics Laboratory’s Low Ocean–Atmosphere Resolution

(LOAR) and Forecast-Oriented LowOcean Resolution (FLOR) coupled models; the main difference between these

two models is the horizontal resolution of the atmospheric model used. Regime-dependent biases are explored in the

light of different atmospheric horizontal resolutions and under different nudging approaches. It is found that both

models exhibit a fair representation of the observed circulation regime spatial patterns and frequencies of occurrence,

although some biases are present independently of the horizontal resolution or the nudging approach and are asso-

ciated with amisrepresentation of troughs centered north of theGreat Lakes and deep coastal troughs. Moreover, the

intraseasonal occurrence of certain model regimes is delayed with respect to observations. On the other hand, inter-

experiment differences in the mean frequencies of occurrence of the simulated weather types, and their variability

across multiple time scales, tend to be negligible. This result suggests that low-resolution models could be of potential

use to diagnose and predict physical variables via their simulated weather type characteristics.
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1. Introduction

Global circulation models (GCMs) are essential tools

for both scientific research (e.g., Delworth et al. 2012;

Taylor et al. 2012) and the development of climate ser-

vices (Vaughan and Dessai 2014) at different time

scales. Since, by definition,1 models are not a perfect

representation of reality, different types of errors must

be accounted for before GCMs can be used as a fair

depiction of the real world.

Common approaches to diagnose systematic errors

involve the computation of metrics aimed at providing

an overall summary of the performance of the model in

reproducing the particular variables of interest in the

study, normally tied to specific spatial and temporal

scales. For example, Gleckler et al. (2008) used different

metrics to assess the climatological behavior of GCMs,

Covey et al. (2016) focused on model evaluation of the

rainfall diurnal cycle, and several studies have analyzed

the present-time rainfall characteristics in state-of-the-

art climate change simulations (see, e.g., Reichler and

Kim 2008; Delworth et al. 2012; Ryu and Hayhoe 2014;

van derWiel et al. 2016). Moreover, the number of open

source packages to evaluate the fidelity of GCMs com-

pared to observations (e.g., Phillips et al. 2014; Mason

and Tippet 2016; Gleckler et al. 2016) is rapidly in-

creasing. Nonetheless, the evaluation of the goodness

of a model is not always tied to the understanding of the

physical processes that are correctly represented, dis-

torted, or even absent in the model world. As the

physical mechanisms are more often than not related to

interactions taking place at multiple time and spatial

scales (e.g., Nakamura et al. 2013; Robertson et al. 2015;

Muñoz et al. 2015, 2016), cross-scale model diagnostic

tools are not only desirable but required.

A complementary alternative to the common di-

agnostic approach mentioned above can be achieved

via a nonlinear dynamical system perspective (Lorenz

1963; Palmer 1999). Thus, typical questions like ‘‘How

well does this model represent the observed seasonal

rainfall patterns?’’ are framed as part of the more gen-

eral question ‘‘Can the model adequately represent the

available states of the system?’’ (in a suitably coarse-

grained phase space; see Ghil and Robertson 2002).

Since only certain physical states can be accessed by the

real-world system under study, as in statistical or quan-

tum mechanics, the rationale is that models that cannot

faithfully reproduce those states should not be expected

to provide, for example, the right rainfall or temperature

patterns for the correct reasons.

How to identify the available states? Theoretically,

they are related to the concept of multiple flow equi-

libria (Lorenz 1969; Charney andDeVore 1979;Reinhold

and Pierrehumbert 1982) and quasi-stationary regimes

or metastable fixed points capable of attracting the

chaotic trajectory of the system; they can be recognized

in a state (or phase) space as regions that are visitedmore

frequently—or, equivalently, regions surrounding a local

density maximum. The identification of these clusters

in the state space poses a nontrivial statistical problem

(Stephenson et al. 2004; Christensen et al. 2015), and in

general they correspond to proxies of the available states

of the system, and not the states themselves. From a

practical perspective, in the atmosphere those clusters

are typically associated with recurrent daily circula-

tion types or ‘‘weather types’’ (WTs), which have been

widely studied in the literature (Lorenz 1969; Charney

and DeVore 1979; Reinhold and Pierrehumbert 1982;

Lorenz 2006; Vautard 1990; Michelangeli et al. 1995;

Robertson and Ghil 1999; Moron et al. 2008a,b; Johnson

and Feldstein 2010; Riddle et al. 2013), as they can lead

to both important positive and negative socioeconomic

impacts.

Formally speaking, weather types are statistical con-

structs associated with recurrent circulation configura-

tions that can be used to study weather regimes, a more

physical concept that often requires additional condi-

tions [e.g., the average time spent on each regime must

be long compared to other oscillations in the system, as

in Lorenz (2006)]. Having stated that formal difference,

for the purposes of this work both concepts are consid-

ered largely interchangeable. If correctly defined, these

weather types can be understood as ‘‘building blocks’’ or

some sort of ‘‘alphabet’’ that can be used to describe all

the physically acceptable events of the system (Muñoz
et al. 2015, 2016). This is shown schematically in Fig. 1;

the events (e.g., rainy days) can be explained by the

occurrence of individual weather types (letters) or par-

ticular WT sequences/transitions (words).

The underlying hypothesis used here is that climate

variability across time scales can be described in terms of

the frequency of occurrence of weather types at the

different scales, with external (or internal) forcings

taking the form of shifts in the residence time of the

system in the different basins of attractions of the state

space. This idea is related to the fluctuation–dissipation

theorem in climate (Leith 1975), which relates the mean

response to small perturbations of a nonlinear dynami-

cal system to fluctuations in the unforced system. As

indicated by Leith (1975), the nonlinear transfer of en-

ergy and enstrophy in the climate system implies sources

1 Thewordmodel is derived fromLatinmodulus, a ‘‘measure’’ or

‘‘standard’’ of something, which evolved to today’s idea of ‘‘like-

ness made to scale,’’ for example in clay or wax, or via mathe-

matical or numerical expressions.
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of these variables in some scales of motion and dissi-

pation in others; hence, considering the present cross-

time scale diagnostics approach can help to understand

the problem better.

Beyond the theoretical interest of associating weather

types with physically acceptable states of the system, the

present approach is useful in those cases in which it is

possible to identify circulation-dependent systematic

errors in climate models; a weather-type rectification

(correction) has the potential to improve the related

physical fields and events in the simulations.

A regime approach has been explored to study gen-

eral biases and uncertainty in climate models at specific

time scales (e.g., Palmer and Weisheimer 2011; Perez

et al. 2014; Christensen et al. 2015). Since it is possible to

analyze the behavior of the circulation regimes over a

wide range of different time scales—for example, by

aggregating their frequency of occurrence at sub-

seasonal, seasonal, interannual and longer time scales—

and since they can be associated with physical processes

occurring across time scales (Moron et al. 2015; Muñoz
et al. 2015, 2016), it is proposed here that the weather-

typing approach provides a natural and unified frame-

work for cross-time-scale diagnostics of GCMs. Although

the scheme is deemed especially useful when considering

seamless prediction systems (Hoskins 2013), it can be also

employed to analyze causes of bias at any particular time

scale. Furthermore, the same set of weather types can be

used to diagnose a wide range of variables in a physically

consistent way, thus shedding light on the causes of biases

rather than focusing on the bias itself.

The goal of the present study is to illustrate the pro-

posed approach using simulations produced by two

coupled GCMs developed by the Geophysical Fluid

Dynamics Laboratory (GFDL), with physical configu-

rations designed to reproduce key aspects of the ob-

served climate variability. For the sake of the illustration,

the study is only focused on rainfall during the March–

May (MAM) season for northeastern North America

(NENA). The MAM atmospheric circulation regimes in

this region are relatively well understood, especially in

relation to flood events in the Ohio and Mississippi river

basins (Nakamura et al. 2013; Robertson et al. 2015).

The rest of the paper is organized as follows. After

introducing the datasets and summarizing the methods

in the next section, observed and modeled rainfall cli-

matologies are analyzed in section 4. The weather-type

diagnostics are presented in section 5 for daily, sub-

seasonal, interannual, and ‘‘decadal’’ time scales, while

section 6 deals with possible sources of bias and an

overall discussion of the results. Finally, the concluding

remarks are presented in section 7.

2. Data

Both observations andmodel outputs were used in the

present study. These are described in the following

subsections. The time period considered in all datasets is

MAM 1981–2012.

a. Observations

Observed rainfall fields were obtained from the gauge-

based NOAA–NCEP–CPC Unified Precipitation grid-

ded dataset (Chen et al. 2008). This product has daily

temporal resolution and a spatial resolution of 18 3 18.
The analysis of the observed daily circulation over

NENA was derived from the NCEP–NCAR Reanalysis

Project (version 2, or NNRPv2) 500-hPa geopotential

data on a 2.58 3 2.58 grid (Kalnay et al. 1996; Kistler et al.

2001), and also from the Modern-Era Retrospective

Analysis for Research and Applications (MERRA) for

the same variable on a 0.58 3 0.58 grid (Rienecker et al.

2011). These two datasets were used to investigate the

impact of horizontal resolution and reanalysis methods

in the identification of the weather types.

b. Model data and experimental design

This study explores the impact of (a) horizontal res-

olution and (b) Newtonian relaxation toward observed

fields on model biases associated with the variability of

circulation regimes at multiple time scales.

The three sets of climate simulations used are 32-yr long,

with 5 members each, produced by two kindred coupled

GCMs developed by the Geophysical Fluid Dynamics

FIG. 1. Schematic showing (left) three available states (A, B, C)

and a forbidden or inaccessible state (D). The system transitions

between the available states (represented by the arrows). Those

transitions define sequences of states (right) that describe events;

e.g., ABC could be related to extreme rainfall events and BBC to

heat waves.
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Laboratory. They share the same ocean, land, and ice

model components inherited from the GFDL coupled

models version 2.1, CM2.1 (Delworth et al. 2006), and

version 2.5, CM2.5 (Delworth et al. 2012).

The models used in this study are the Low Ocean–

Atmosphere Resolution (LOAR; van der Wiel et al.

2016), and the Forecast-Oriented Low Ocean Resolu-

tion (FLOR; Vecchi et al. 2014). Unlike CM2.1 and

CM2.5, LOAR and FLOR use essentially the same at-

mospheric model component, based on a finite-volume

dynamical core on a cubed sphere (Putman and Lin

2007), integrating along 32 vertical levels and with hor-

izontal resolutions of 28 3 28 (C48) for LOARand 0.58 3
0.58 (C180) for FLOR. The dynamical time step is

modified to match the individual model’s atmospheric

resolution, and the atmospheric physics for both models

is similar to that in CM2.5 (Delworth et al. 2012; Vecchi

et al. 2014). The ocean model component is theModular

Ocean Model (MOM) version 5 (Griffies 2012), at 18 3
18 and configured as reported in Vecchi et al. (2014). The

land surface model is the Land Model version 3 (LM3;

Milly et al. 2014), with the same horizontal resolution as

the atmospheric model component. The sea ice model

component is the Sea Ice Simulator (SIS), having three

vertical layers, one snow and two ice, and five thickness

categories, as reported in Delworth et al. (2006) and

references therein. The time resolution for all model

output is daily.

A typical way to explore how well uncoupled GCMs

reproduce the observed natural variability is to force

them with observed SSTs [e.g., à la the Atmospheric

Model Intercomparison Project (AMIP) (Gates et al.

1999)]. Although this approach is, by definition, not

possible for coupled GCMs, a common alternative is to

use a Newtonian nudging to relax certain model fields,

such as SSTs, toward observations (e.g., Rosati et al.

1997). This method has been shown useful to reproduce

key aspects of the natural variability of the climate sys-

tem and to decrease model biases [e.g., Luo et al. (2008),

and references therein]. Thus, all three experiments

used in the study were nudged to observed fields as

follows.

In two sets of numerical experiments, LOARsst and

FLORsst, the models’ SSTs were relaxed to the daily-

interpolated observed HadISST product (Rayner et al.

2003), SSTO, using a restoring time scale t5 5 days, such

that

›
t
SST5 dSST1

1

t
(SST

O
2 SST), (1)

where ›t represents the partial time derivative of the

field, and bu the coupled model tendency of the field.

These two experiments were used to analyze the impact

of horizontal resolution on model biases.

Since nudging only SSTs is often inadequate (Fujii

et al. 2009), as the variability in the climate system is not

only controlled by sea surface temperatures, for the

third set of numerical experiments, called FLORsst1strat,

MERRA’s 6-hourly stratospheric temperatures and

winds above 100hPa were nudged in addition to the SST

nudging described above. The same ansatz presented in

Eq. (1) was used but with a relaxation time t5 6 hours,

and a tapering factor g such that it is one for model

layers above 50hPa (i.e., 1, 4, 8, 14, 21, 30, and 41hPa),

and it is zero for layers below 100hPa; from 50 to

100 hPa, g varies linearly from one to zero, thus tran-

sitioning in a smooth way from the stratosphere to the

troposphere. This same stratospheric nudging approach

has been used recently by Jia et al. (2017) to show the

role of the extratropical stratosphere as an important

source of predictability at interannual scale. Both

FLORsst and FLORsst1strat were used in this study to

explore the role of nudging in model biases.

3. Methods

Here the general methodology is described. The di-

agnostic approach per se is described in section 5.

a. Cluster analysis

To identify the proxies of the available states of the

system, daily circulation regimes were determined per-

forming a k-means analysis (e.g., Robertson and Ghil

1999) on observed and modeled 500-hPa geopotential

height anomalies, each at its own spatial resolution to

avoid the possibility of spurious results induced by the

spatial interpolation process.

The k-means technique is a partitioning method that

classifies all days into a predefined number of clusters,

minimizing the intracluster sum of variance, W , for a

partition P (the Voronoi diagram generated by the

classification process):

W ðP Þ5 �
k

i
�
X2pi

ds2(X , p
i
), (2)

where i5 1 . . . k, k is the total number of clusters in the

solution, pi denotes the different clusters in the parti-

tion, and ds2(X, pi) represents the Euclidean line ele-

ment (distance) between the cluster’s maps X and

centroid pi. In this work, no areal weighting was neces-

sary, as the selected domain is relatively small and it

does not extend into high latitudes (308–508N; more

details below).
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This procedure assigns only one cluster to each day on

record. Daily geopotential data were first projected onto

its six leading empirical orthogonal functions (same

number for all datasets), accounting for at least 95% of

the total observed variance. No additional time filtering

was applied to the data before clustering, thus retaining

the annual seasonal cycle and interannual, subseasonal,

and synoptic weather time scales for diagnosis. No

projection between the modeled and observed leading

empirical orthogonal functions was performed (i.e., the

modeled WTs were directly obtained using exactly the

same procedure as for the observed ones). As with

the avoidance of any kind of spatial interpolation before

the k-means analysis, this was done in order to evaluate

each model’s weather types in an unbiased way.

Two approaches were tested to define the 500-hPa

geopotential anomalies (departures from the long-term

mean) that characterize each weather type. In one, the

anomalies of all members were concatenated along the

time coordinate before the k-means process was per-

formed, as in Muñoz et al. (2016). In the second ap-

proach, the classification of the 500-hPa geopotential

anomalies was performed for each member in-

dependently, then computing the ensemble mean of the

same weather type across members. The latter method

was used in the present study as it respects the chro-

nology and transition probabilities of the weather types

in the presence of nonstationary data.

The classifiability index (CI; Michelangeli et al. 1995)

measures the similarity of partitions of the data, and

permits the identification of the minimum number of

clusters required to achieve a good classification. Clas-

sification performance is measured via the pattern (or

anomaly) correlation coefficient rij between pairs of

cluster centroids pi and qj in partitions P and Q , re-

spectively, which allows the matrix r½P (k), Q (k)� to be

computed, with elements given by

r(p
i
, q

j
)[

�
M

m

p0
imq

0
jmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
M

m

p02
im�

M

m

q02
jm

s "i, j5 1 . . . k , (3)

where the sums consider all the M grid points in the do-

main, and the grid point deviations are computed as usual:

p0
im 5 p

im
2

1

k
�
k

r

p
rm
, (4)

q0
jm 5 q

jm
2

1

k
�
k

r

q
rm
, (5)

where m5 1 . . .M. The maximal value of the ith row of

the k3 k matrix r in Eq. (3) represents the cluster in Q

that best fits the ith cluster in P . If the two partitions are

identical, of course, r5 1.

In this study, a total of N5 100 partitions are used,

obtained from 100 different initial random seeds of the

algorithm; the single partition that matches most closely

the remaining ones is then selected. This similarity is

computed by averaging the values of rðP n, P n0 Þ
"n, n0 5 1 . . .N, and, following Michelangeli et al.

(1995),

CI(k)[
1

N(N2 1)
�

1#n 6¼n0#N

r
�
P (k)

n
,P (k)

n0
��
. (6)

Clustering solutions within the range of k5 2–10 were

explored for the NENA geographical domain, bounded

by 308–508N and 1058–698W. A k-means seven-cluster

solution was found to yield a statistically significant

value of the classifiability index (p, 0:1), compared to a

red-noise background modeled as a first-order Markov

process having the same covariance at lag 0 and 1 days as

the atmospheric data (Michelangeli et al. 1995); there-

fore the solution, which is the same one reported by

Robertson et al. (2015), was selected for further analysis.

This set of clusters, or weather types, can be inter-

preted as a set of geopotential regimes that typify the

daily variability, and are considered to be the so-called

building blocks or letters mentioned in the introduction.

Other cluster solutions were explored, verifying that the

general features of the circulation regimes presented

below are robust and sufficient for the purposes of

this study.

b. Similarity metrics

There are multiple metrics to evaluate how well a

model reproduces observations (e.g., Mason and

Stephenson 2008; Jolliffe and Stephenson 2012); selec-

tion among them depends on the attribute or type of

question to be addressed. For the sake of simplicity, this

work focuses on the similarity of spatial patterns and

temporal behavior between the simulated and observed

weather types. Two metrics are chosen for that purpose:

pattern correlation and the scatter index. As indicated

before, the k-means analysis is performed on the native

grid of the models and the observations; however, when

comparing results, all calculations were always carried

out in a common low resolution grid of 2.58 3 2.58 (the
one of the NNRPv2 dataset).

The pattern correlation r is computed following

Eq. (3), but considering the fact that the partitions now

correspond to those modeled and observed.

The scatter index j is defined here as the root-mean-

square error operator of the simulated and observed

frequencies of occurrence of theweather types, normalized
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by the weather type mean frequency (e.g., Perez et al.

2014). The frequency of occurrence is defined as the pro-

portion of time that each weather type occurs at each time

scale window of interest, averaged across ensemble mem-

bers for the case of model simulations (see an example

below). Two versions of the scatter index are used in this

work, one to evaluate the mean frequency state, jjts, and
another for the temporal variability at different time scale

windows ts, jsjts:

jj
ts
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�

k

i

( f Si 2 f Oi )2

s

�
k

i

f Oi

����������
ts

, (7)

j
s
j
ts
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�

k

i

[s( f Si )2s( f Oi )]2

s

�
k

i

s( f Oi )

����������
ts

, (8)

where f Si and f Oi denote the simulated and observed

frequencies of the i5 1:..kweather types, and s denotes

the corresponding sample standard deviation. The dif-

ferent time scales (or time scale windows) are presented

in section 5. Amodel with a perfect representation of the

observed frequency of occurrence satisfies jjts 5 0, and

in consequence its representation of the variability in

the frequency of occurrence is also perfect (jsjts 5 0). In

general that is not the case, and each index provides

information on these two statistics.

To evaluate the scatter index at a particular time scale

implies performing the corresponding calculations on

the time window defined for that purpose. To illustrate

this idea, consider as an example the overall evaluation

of a model representation of the observed weather type

frequencies during the window defined as 16–31 May,

for all seasons in the period 1981–2012. The scatter in-

dices are then computed considering the observed and

simulated frequencies of occurrence of weather types

for those thirty-one 16-day-long windows, using Eqs. (7)

and (8), where the vertical bars indicate that the indices

are to be evaluated for the particular time scale (win-

dow) ts.

Once the scatter indices have been computed for the

different time scales of interest, they can be presented

using boxplots to also convey information about their

uncertainties in the models; for example, if all members

in a model perfectly agree on the value of a scatter index

for a particular time scale, the corresponding box in the

boxplot will collapse to an horizontal line. More details

about these boxplots are discussed in section 5.

To analyze persistence of the weather types, the em-

pirical probability density functions were computed for

each dataset and regime. To compare between the dif-

ferent numerical experiments and the reanalysis, the

Euclidean distance between each pair of the corre-

sponding Weibull distribution parameters, a (scale) and

b (shape), was used to assess similarity. The Weibull

distribution

f (x ja,b)5b

a

�x
a

�b21

exp

	�
2
x

a

�b



(9)

is commonly used in survival or duration analysis, and

provided better fit than other less flexible distributions,

like the exponential one (which corresponds to the

special case of b5 1).

4. Northeastern North America’s rainfall
climatology

It is a common practice to evaluate the fidelity of a

model compared to observations through the analysis of

the climatological behavior of the variable of interest.

This section uses the MAM rainfall climatology of the

region under study (308–508N and 1058–698W; see Fig. 2)

to illustrate some key ideas of the present diagnostic

approach.

The observed rainfall climatology (Fig. 2a) exhibits

a clear precipitation gradient with higher amounts

(’32 4 mmday21) in a wide region covering approxi-

mately 308–408N and 978–848W (most parts of Alabama,

Mississippi, Louisiana, Arkansas, Tennessee, southern

Missouri, and southwestern Kentucky), with basically no

precipitation along the western border of NENA (Texas,

Oklahoma,Kansas, Nebraska, theDakotas, and southern

Ontario), 0.5–1mmday21 to the north (southern Ontario

and Quebec) and 2–3.5mmday21 along the eastern coast

(from northern Florida to Maine).

A visual inspection of the models’ climatology

(Figs. 2b–d) clearly shows some important biases in

both magnitudes and spatial distribution of rainfall,

with simulations at higher resolution (Figs. 2c,d) ex-

hibiting some improvement with respect to the low-

resolution one (Fig. 2b).

What are the causes of such biases? Typically, issues

involving model resolution or physical parameteriza-

tions (specially for rainfall) are frequently identified as

the sources of bias—and indeed higher horizontal and

vertical resolution, as well as better physics, tends to

improve the representation of the observed fields.

Nonetheless, it is also possible that the resolution and

parameterizations are fit for the purpose, and something

else is failing. Whatever the causes, a complementary
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approach consisting of the diagnosis of the physical

mechanisms conducive to precipitation—rather than

how well the precipitation itself is represented in the

model—is also useful and most often required.

Rainfall variability in NENA is dominated by

synoptic-scale circulation patterns (Archambault et al.

2008; Nakamura et al. 2013; Robertson et al. 2015;

Roller et al. 2016) that are, in turn, modulated by well-

known climate modes at multiple time scales like El

Niño–Southern Oscillation (ENSO), the North Atlantic

Oscillation (NAO), the Pacific–North American pattern

(PNA), or the Madden–Julian oscillation (MJO; e.g.,

Ropelewski and Halpert 1986, 1987; Barnston and

Livezey 1987; Wheeler and Hendon 2004).

Although some studies have found an inconclusive

link between ENSO and NENA’s climate (e.g.,

Ropelewski and Halpert 1986), others indicate that this

mode can modulate the frequency of low pressure sys-

tems and storms in the region (Trenberth and Caron

2000; Frankoski and DeGaetano 2011). Similarly, pres-

sure and geopotential height anomalies associated

with the NAO modify the frequency of occurrence of

nor’easters, as well as storm track locations over the

North Atlantic basin via changes to the position and

orientation of the North Atlantic jet stream (Jones and

Davis 1995; Archambault et al. 2008). There is also ev-

idence of links between PNA and NENA’s rainfall

anomalies (Leathers et al. 1991; Notaro et al. 2006), and

between MJO’s phases 5–7 and precipitation rate in the

region (Becker et al. 2011; Zhou et al. 2012).

The effect of these and other climate modes condu-

cive to rainfall in NENA can be studied through their

influence in the occurrence, persistence, and evolution

of daily weather types. For example, Roller et al. (2016)

analyzed NENA’s wintertime mean and extreme pre-

cipitation, storm tracks, and teleconnections using a set

of five WTs defined in terms of 850-hPa winds; similar

studies have been conducted in other parts of the world

for different seasons (Moron et al. 2008a,b, 2012, 2015;

Muñoz et al. 2015, 2016).
The rainfall climatology (Fig. 2) discussed in this

section can thus be understood in terms of the (non)

linear contribution of the different mechanisms repre-

sented by persistence and transitions of the region’s

daily circulation regimes (WTs, or atmospheric states).

Amisrepresentation of the physical interactions involved,

FIG. 2. Rainfall climatology (MAM 1981–2012) for northeastern North America: (a) observations, (b) LOARsst,

(c) FLORsst, and (d) FLORsst1strat. Units are in mmday21. Ocean has been masked in (b)–(d). Each dataset is

plotted using its native horizontal resolution.
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evenwith perfect rainfall parameterizations, can generate

bias not only in the climatological precipitation field

but also in higher-order statistics of the rainfall vari-

ability at different time scales. The same can be said

about other variables physically associated with the

behavior of those WTs.

Hence, the next section focuses on diagnosing how

well the models represent the observed behavior of the

WTs for different time scales.

5. Cross-time-scale diagnostics

This section first discusses the circulation regimes

obtained for the observations and experiments, before

turning to different tools to diagnose the weather types

evolution at daily to decadal scales. Although the

method is general and can be used for longer time scales,

this study is constrained by the availability of longer

observed rainfall records.

The computed set of seven NENAWTs found to best

typify the daily circulation regimes for MAM is pre-

sented in Fig. 3 plotted over the entire hemisphere to

better identify wavelike patterns, and in Fig. 4 for amore

regional analysis of the weather types. The regimes with

the highest observed frequency of occurrence are lo-

cated to the left and the less frequently occurring to the

right (see top row in those figures; the model regimes

were ordered to follow each observed pattern). Equa-

tion (3) was used to identify the ‘‘model-equivalent

WT’’ and physical interpretation of the hemispheric

patterns (Fig. 3) was used in those cases in which the

pattern correlation coefficients provided too similar

values for two given regimes.

Two different reanalysis products were used to analyze

the robustness of the method identifying the observed

WTs, and the dependence on horizontal resolution

(NNRPv2 at;2.58 vs MERRA at;0.58). Tables 1 and 2

show a comparison of the anomaly correlation coefficient

between WTs using NNRPv2 and MERRA as a refer-

ence, respectively. The results are indeed consistent

across reanalyses and resolutions.

The observed weather types (top two rows of Figs. 3

and 4) exhibit synoptic-scale meridionally elongated

dipolar wave patterns (WT1, WT3, WT5, WT6), and

monopole/dipole patterns that are zonally elongated (WT2,

WT4, WT7). Weather regimes that are predominantly

FIG. 3. Hemispheric view of observed (NNRPv2 andMERRA) andmodeled (LOARsst, FLORsst, FLORsst1strat) weather types (WTs),

using geopotential height anomalies at 500 hPa (contour interval is 20 gpm). Red solid (blue dashed) lines indicate positive (negative)

anomalies. In the model experiments, regions showing statistically significant (p, 0:05) ensemble-mean anomalies are shaded in gray.

Relative frequency of occurrence for the entire 32-yr period is indicated in parentheses, with model experiments showing the ensemble

mean 6 one standard deviation. Each dataset is plotted using its native horizontal resolution.
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associated with positive geopotential anomalies (WT1

and WT2) tend to be more frequent—and more persis-

tent, as will be shown later—than the more transient re-

gimes (WT4–WT7), which show spatial structures with

dominant negative geopotential anomalies (see Figs. 3

and 4). Although this general separation between more

persistent and more transient circulation regimes is

present in the simulations, the ordering in those cases—

which reflects their mean frequencies—is not exactly the

same as in the observations.

As it will be shown in section 5b, there are preferred

sequences of states whose pattern evolution and typical

time scales suggest eastward propagation of baroclinic

waves (e.g., state transitions 3/ 1/ 3; top rows in

Fig. 3). Generally speaking, in NENA the MAM daily

circulation regimes tend to be associated with conti-

nental ridges west of the Great Lakes (WT1; top rows in

Fig. 4), continental ridges over the Great Lakes (WT2),

northeastern seaboard ridges (WT3), troughs centered

north of the Great Lakes (WT4), deep coastal land

troughs (WT5), southeastern seaboard ridges (WT6),

and deep northeastern troughs (WT7). The seaboard

ridges (WT3 and WT6) have been shown to be associ-

ated with extreme rainfall events in the Ohio River ba-

sin; these two circulation types tend to occur more often

during La Niña years, and phase 5 of the MJO also

FIG. 4. As in Fig. 3, but for most of North America.

TABLE 1. Anomaly correlation coefficient (Spearman) between the model-equivalent ensemble-mean weather types (WTs) in each

experiment and the corresponding circulation regime in NNRPv2, computed on the reanalysis grid for the domain sketched in Fig. 4.

Numbers in bold indicate the highest correlations found in the model experiments, all values being statistically significant (Student’s t test;

p, 0:05). No statistically significant difference was found between the average anomaly correlation coefficients of the experiments.

Dataset vs NNRPv2 WT1 WT2 WT3 WT4 WT5 WT6 WT7 Average

MERRA 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.98

LOARsst 0.93 0.93 0.37 0.54 0.66 0.87 0.91 0.74

FLORsst 0.89 0.96 0.20 0.66 0.72 0.89 0.94 0.75

FLORsst1strat 0.90 0.97 20.11 0.78 0.66 0.84 0.95 0.71
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modulates their seasonal frequency, with lower occur-

rence for WT3 and higher presence for WT6 [for addi-

tional details see Robertson et al. (2015)].

There is no simple answer to the question of what set

of experiments best represents the observed weather

types, as the answer depends on the basis for the com-

parison. The shapes, magnitudes, locations, tilts, and

frequencies of the weather types are characteristics to

consider. On average, both LOAR and FLOR models

do a good job reproducing the observed circulation re-

gimes, although some important biases are present

(Figs. 3 and 4; Tables 1 and 2). For example, the spatial

features of WT1, the most frequently observed, are well

represented in all experiments, but the ensemble-mean

frequency of occurrence is about 30% too low in

FLORsst. The observed dipolar configuration in WT3 is

basically absent in the FLORsst1strat ensemble mean for

that regime, and for WT4 all experiments exhibit

southwardly shifted and widely enhanced negative ge-

opotential anomalies with respect to the observations.

WT5 appears severely tilted (about 1458) in the simu-

lations, arguably due to a misrepresentation and loca-

tion of the weak positive geopotential anomaly observed

north of 508N near and over the Great Lakes (Fig. 4).

FLOR tends to show positive geopotential anomalies

along the eastern coast of the United States in WT6,

especially in the FLORsst1strat experiment, which also

exhibits important frequency biases for that regime.

Finally, although the simulatedWT7 spatial patterns are

very well represented (see high correlations in Tables 1

and 2), all experiments overestimate its frequency of

occurrence.

Since there are no striking differences in the weather

type representations in terms of the resolution of the

reanalyses, the NNRPv2 product is selected as the ref-

erence in all following discussions about circulation re-

gimes characteristics, unless otherwise indicated.

The persistence of these circulation patterns and their

transitions control, both in the real world and in the

simulations, aspects like the moisture that is advected

into NENA, and thus this weather-within-climate

approach is normally used to better understand the

physical mechanisms behind the occurrence or not of

(extremely) rainy days in a region (Robertson and Ghil

1999; Moron et al. 2008a, 2013, 2015; Muñoz et al. 2015,
2016). As discussed in section 4, the systematic errors in

the simulated weather regimes can help to explain the

biases in other variables, as for example in the rainfall

field and its climatological behavior. To illustrate this

idea, Fig. 5 shows the average daily rainfall regimes

(RR), defined by compositing rainfall values associated

with each weather type.

As expected, FLOR tends to simulate better the

rainfall field than LOAR at a local level; however, at a

regional scale, there are not statistically significant dif-

ferences (p, 0:05; two-sample Student’s t test) in the

spatial correlation coefficients between the three ex-

periments. Table 3 shows the anomaly correlation co-

efficients between the rainfall regimes in the models and

observations. Overall, the most significant biases appear

in the daily rainfall regimes associated with the weather

types showing greater bias over NENA (Fig. 5), that is,

WT4 and WT5. Errors in magnitude and spatial distri-

bution of the rainfall anomalies are related to mis-

represented atmospheric circulations and moisture

fluxes inWT4 in all experiments (not shown), exhibiting

positive rainfall anomalies along the coast as a result of

the deformed and displaced trough discussed above

(Fig. 4). In spite of the tilt that WT5 exhibits in the

simulations, the associated daily rainfall patterns for

NENAare not too biased, except along the northeastern

coast where the anomalies should have opposite sign;

this is attributed in part to the fact that the circulation

and moisture fluxes over NENA are similar to the ob-

served one, even when that is not the case at a larger

scale. Likewise, although WT3 is the circulation regime

with the worst large-scale anomaly correlation co-

efficients (e.g., Table 1), its representation of the asso-

ciated physical mechanisms controlling rainfall over

NENA provides a very good depiction of the observed

rainfall regime RR3. Having this regime well repre-

sented in the simulations is important to adequately

represent extreme rainfall events over the Ohio River

basin (Robertson et al. 2015).

TABLE 2. Anomaly correlation coefficient (Spearman) between the model-equivalent ensemble-meanWTs in each experiment and the

corresponding circulation regime inMERRA, computed on the reanalysis grid for the domain sketched in Fig. 4. Numbers in bold indicate

highest correlations found in the model experiments, all values being statistically significant (Student’s t test; p, 0:05). No statistically

significant difference was found between the average anomaly correlation coefficients of the experiments.

Dataset vs MERRA WT1 WT2 WT3 WT4 WT5 WT6 WT7 Average

NNRPv2 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.98

LOARsst 0.92 0.93 0.36 0.58 0.73 0.86 0.91 0.75

FLORsst 0.90 0.96 0.18 0.70 0.72 0.89 0.94 0.75

FLORsst1strat 0.91 0.96 20.10 0.82 0.74 0.85 0.96 0.73
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Biases both in the spatial patterns (involving shape,

magnitudes, tilt, location) and the frequency of occur-

rence of the simulated weather types contribute to bia-

ses in rainfall and other variables at different time scales.

In studies involving a large number of years (e.g., 100

years), two different k-means solutions should be com-

puted to analyze, for example, whether the climate

change signal is modifying the weather types’ spatial

patterns or the dimensionality of the phase space. For

studies like the present one, however, which involves

just three decades, the spatial patterns are normally as-

sumed to be constant. This allows for the analysis of the

weather types’ temporal variability at different time

scales in terms of changes in their frequency of occur-

rence at those time scales.

A possible way to summarize howwell the simulations

reproduce both the mean frequency of occurrence and

its variability across multiple time scales is through the

use of the corresponding scatter indices [see Eqs. (7) and

(8)], presented in Fig. 6 for two particular subseasonal

windows (20–30 March and 4–14 May; further discussed

in section 5c), for the interannual variability considering

all MAM seasons in the 1981–2012 period (section 5d),

and for the first and last decades in the same period of

years (section 5e). As with the case of the spatial pat-

terns (e.g., Table 1), the analysis of the frequencies of

occurrence indicates that no particular model or ex-

periment can be overall considered the best one across

all the time scales in study. Certainly, there are differ-

ences in terms of the median and dispersion values at

particular scales, with higher errors and uncertainties in

the subseasonal case; nonetheless, within-scale differ-

ences in the medians are normally negligible. Further-

more, compared to LOARsst, FLORsst tends to have the

same or a lower dispersion for both scatter indices

(Fig. 6).

The following subsections provide more details on

daily transition statistics using Klee diagrams (sections

FIG. 5. Observed and modeled (LOARsst, FLORsst, FLORsst1strat) rainfall regimes (RR) associated with each weather type

(mmday21). Relative frequency of occurrence for the entire 32-yr period is indicated in parentheses, withmodel experiments showing the

ensemble mean 6 one standard deviation. Each dataset is plotted using its native horizontal resolution.

TABLE 3. Anomaly correlation coefficient (Spearman) between the model-equivalent ensemble-mean rainfall regimes (RRs) in each

experiment and the corresponding rainfall pattern in the observations, computed on the observations grid for the domain sketched in

Fig. 5. Numbers in bold indicate highest correlations found in the model experiments, all values being statistically significant (Student’s t

test; p, 0:05). No statistically significant difference was found between the average anomaly correlation coefficients of the experiments.

Experiment RR1 RR2 RR3 RR4 RR5 RR6 RR7 Average

LOARsst 0.80 0.83 0.87 0.51 0.57 0.80 0.87 0.75

FLORsst 0.78 0.81 0.90 0.48 0.64 0.79 0.88 0.75

FLORsst1strat 0.83 0.82 0.88 0.38 0.69 0.62 0.90 0.73
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5a and 5b) and further analysis pertinent to the temporal

variability of the simulated circulation regimes and to

understanding Fig. 6 (sections 5c, 5d, and 5e).

a. Klee diagrams

Klee diagrams, shown in Fig. 7, are a way to represent

the temporal evolution of the available states of the

system (Muñoz et al. 2015). These diagrams consist of a

simple matrix plot sketching the daily evolution of

weather types for the entire period under study. They

are equivalent to the representation of the Viterbi state

sequences, except for the fact that no Viterbi algorithm

or hidden Markov model (e.g., Robertson et al. 2006) is

involved in the process. A Klee diagram is the basis for

analyzing daily transitions and temporal variability at

subseasonal, seasonal, decadal, and longer time scales.

Moreover, it has been used to define subseasonal-to-

seasonal states for forecast purposes, using hybrid

dynamical–statistical models (Muñoz et al. 2016).
If a simulation has exactly the same Klee diagram as

the one computed from the observations, then it has a

perfect representation of the observed weather types’

evolution across time scales, independently of how well

the model represents their spatial patterns; of course,

even if the models were perfect, the Klee diagrams

would not be exactly the same due to atmospheric chaos.

Nonetheless, the idea is conceptually useful, and helps

to define several ways to diagnose similarity in the

temporal evolution and associated statistics. Moreover,

having simulated Klee diagrams that exhibit similar

characteristics to observations is also of practical use

because it is then possible to use a combination of

modeled frequencies of occurrence and observed spatial

patterns to represent the evolution of the circulation

regimes at a given time scale. In such cases, this ap-

proach has important implications for prediction, an

idea that is briefly discussed in section 6, and that will be

explored in more detail elsewhere.

Overall, the observed and simulated Klee diagrams

for NENA show high similarity (Fig. 7). Since it is not

possible to have an ensemble mean of Klee diagrams

because they represent categories and not real numbers,

the analysis must be performed on a member-per-

member basis. Visual inspection suggests that all ex-

periments exhibit a dominance ofWT1 andWT2 toward

the end of the season, and of WT6 and WT7 during

the first half, all consistent with the observations and

consistent with the predominance of negative height

FIG. 6. Boxplots of scatter indices for (a) the mean and (b) standard deviation of the frequency of occurrence of

weather types across multiple time scales. Perfect coincidence between simulations and observations corresponds

to a scatter index value of zero. For each boxplot, the central mark indicates the ensemble median, and the bottom

and top edges of the box indicate the ensemble 25th and 75th percentiles, respectively. The whiskers extend to the

most extreme data points not considered outliers, and the outliers (values .2.7 standard deviations) are plotted

individually using the ‘‘1’’ symbol. For additional details see sections 5c, 5d, and 5e.
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anomalies in March and positive ones in May within the

MAM season (Fig. 4). However, some biases are ap-

parent, like the presence in LOARsst and FLORsst1strat

of too many days with WT3 at the end of the season,

which, for example, could provide false alarms in those

cases in which WT3 is related to floods in the Ohio

River basin.

Different statistics can easily be computed from the

Klee diagrams to help diagnose and compare dynamical

models. Some examples—like daily transition proba-

bilities, mean durations (persistence) for each weather

type, and other summaries to analyze the evolution of

the circulation regimes at different time scales—are

discussed in the following subsections.

b. Daily transitions and typical durations

Daily transition matrices are commonly used to

characterize persistence and preferred state transitions.

Their diagonal sketches the persistence probabilities

for each weather type, and the off-diagonal elements

represent the conditional probabilities of transition to a

particular regime (along the horizontal axes of the

matrix; ‘‘posterior WT’’) given that a different weather

type (along the vertical axes; ‘‘prior WT’’) occurred on

the previous day.

Daily transitions in NENA, presented in Fig. 8, are

dominated by persistence, with continental ridges over

the Great Lakes (WT2) being the most probable regime

to persist, especially during May (Fig. 7). The most

frequently observed statistically significant transitions

(p, 0:1; see Vautard et al. 1990) suggest circuits like

1/ (2, 3)/ 1 or 4/ 3/ 1, that can be associated

with the propagation of baroclinic waves over NENA,

but also transitions leading to highly persistent states,

like 6/ 7/ 4, associated with anomalously high

moisture fluxes from the Gulf of Mexico and the

Caribbean conducive to rainy days along the eastern coast,

followed by days with a high pressure system stationed in

the northern part of the region, typically conducive to low-

level divergence and no rain (see Figs. 4, 5, and 7).

All simulations for NENA adequately represent the

fact that the persistence probabilities are significantly

higher than nonself transitions. As expected, some bia-

ses exist; for example, the persistence of WT4 in the

LOARsst and FLORsst experiments (see Fig. 8) is

overestimated, and there are consistent biases in all

FIG. 7. Klee diagrams for (a) NNRPv2 and numerical experiments (b) LOARsst, (c) FLORsst, and

(d) FLORsst1strat. Each tile corresponds to a particular day, and the colors represent different weather types (see

color bar). Only one member per experiment is shown (others are similar).
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experiments for transitions like 3/ 4, 4/ 3, 4/ 1,

7/ 5, and 4/ 7. But in general, all models tend to

capture most of the observed transition probabilities,

with differences always less than 615%; moreover, no

statistically significant differences (p, 0:05; two-sample

Student’s t test) exist between the average transition

probabilities of the experiments.

It is also important to evaluate if the simulations fairly

represent the typical persistence of the weather types.

Figure 9 shows relative frequency histograms and their

corresponding Weibull distribution fit for the most

common durations; for comparison, Table 4 presents the

values of the Weibull distribution parameters a and b,

which measure the scale (or characteristic life) and the

shape (or slope) of the distribution, respectively.

This analysis indicates that WT1–WT3 (predominant in

May) tend to persist more than the other weather types (as

expected from the visual inspection of the observations’

Klee diagram; Fig. 7), WT4 tends to transition faster than

the other regimes, andWT5–WT7 exhibit similar duration

probability density functions (PDFs), all these facts in

agreement with the observations.

As with the spatial patterns of the weather types be-

tween models and observations, there is not a unique set

of experiments that is consistently better than the others

(i.e., for which all the regimes adequately represent the

observed persistence distributions); nonetheless, FLORsst

tends to have better self-transition statistics for WT2, and

WT4–WT6 (Table 4; bold numbers indicate experiments

with the best representation of self-transitions, or persis-

tence, for each WT). Overall, although the main charac-

teristics of the duration PDFs are captured well by the

experiments (e.g., the fact that can be well modeled by a

Weibull distribution, higher persistence in WT1–WT3),

certain features are not. It is possible to identifyWT5 and

WT6 as the regimeswith theworst representation in terms

of persistence in all simulations (Table 4); for example,

WT5 overestimates the number of ‘‘early’’ transitions by

at least a factor of 1.5. As complementary information,

Table 5 summarizes the average persistence of each WT

FIG. 8. (a) Daily transition probabilities P for observed (NNRPv2) weather types (see label

bar). A star indicates statistically significant transitions (p, 0:1; see Vautard et al. 1990).

Vertical and horizontal axes correspond to the prior and posterior WTs, respectively.

(b)–(d) Differences between the LOARsst, FLORsst, and FLORsst1strat ensemble-mean transition

probabilities and those presented in (a), respectively. Average differences among (b)–(d) are

not statistically significant (p, 0:05, using a two-sample Student’s t test).
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in the NNRPv2 and the numerical experiments; results

are consistent with the discussion presented above and

Table 4.

c. Subseasonal evolution

The typical subseasonal evolution of the weather

types can be analyzed using their ‘‘climatological’’ fre-

quency of occurrence as computed by the regime’s ap-

pearance for each calendar day, after an 11-day moving

average is applied to the frequency of occurrence time

series in order to filter out the shortest time scales. This

metric, hereafter referred to as ‘‘subseasonality’’ to

avoid the cacophonic phrase ‘‘subseasonal seasonality,’’

is shown in Fig. 10. Clearly, MAM is a transition season

between boreal winter and summer that could be

characterized by low occurrence of ridge configura-

tions (WT1–WT3) duringMarch, and their dominance

during May.

Generally speaking, the sketched subseasonal evolu-

tion of the weather types in the numerical experiments is

FIG. 9. Average durations (in days) for each weather type (see label bar) in NNRPv2, LOARsst, FLORsst, and FLORsst1strat. Red curves

sketch the corresponding Weibull fit, whose parameters a and b are presented in Table 4.

TABLE 4. Best fit of Weibull parameters (a, b) for the model-equivalent ensemble-mean weather type durations sketched by the red

curves in Fig. 9. Bold pairs indicateminimumEuclidean distance ds5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Da2 1Db2)

p
, whereD denotes differences between simulated and

observed parameters.

WT1 WT2 WT3 WT4 WT5 WT6 WT7

NNRPv2 (3.52,1.46) (1.71,0.55) (2.56,1.13) (2.53,1.36) (1.47,0.76) (1.30,0.73) (0.83,0.62)

LOARsst (2.90,1.29) (1.13,0.53) (2.22,0.83) (1.89,0.84) (3.09,1.48) (3.12,1.57) (0.82,0.61)

FLORsst (2.73,1.04) (1.71,0.54) (2.05,0.87) (2.86,1.48) (1.94,0.95) (1.21,0.68) (1.10,0.66)

FLORsst1strat (3.47,1.43) (1.87,0.53) (1.82,0.78) (1.56,0.82) (2.74,1.47) (2.95,1.45) (0.93,0.63)
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similar to the observations, although there is an overall

delayed subseasonality in several weather types (cf. the

slopes of the curves in Figs. 10b–d with the ones in

Fig. 10a). Biases are present both in the subseasonal

frequency of occurrence of some weather types and in

their actual evolution. For example, the frequency of

WT4 is underestimated in all experiments, especially

after calendar day 50 (Fig. 10); the model-equivalent

WT5–WT7 tend to have more or less the same relative

frequency of occurrence in April than inMarch, which is

inconsistent with observations; WT1 has its peak of

occurrence typically between calendar days 65 and 75

(4–14 May), but this maximum appears about 10 days

earlier in FLORsst1strat.

Because of the clear differences between the begin-

ning and the end of the season, two periods were con-

sidered for further analysis: 20–30 March and 4–14 May

(see black boxes in Fig. 10).

Errors in the median values of the simulated fre-

quencies of occurrence of weather types, as measured by

the scatter index (Fig. 6a), tend to be similar between the

two periods under consideration, although with higher

dispersion during the second half of the season, which is

mostly due to the misrepresentation of the sub-

seasonality of WT4–WT6. On the other hand, errors in

the standard deviations of the occurrences are more

clearly discriminated (Fig. 6b), being similar in all three

experiments but with higher values for the 4–14 May

period. For the end-of-March section under study,

the median values for the standard deviations of the

TABLE 5. Average persistence (in days) for each WT in the

NNRPv2 dataset and the numerical experiments. Values close to

reanalysis are presented in bold.

WT1 WT2 WT3 WT4 WT5 WT6 WT7

NNRPv2 4.06 3.47 3.36 3.21 2.62 2.48 2.14

LOARsst 3.59 2.94 3.31 2.96 3.66 3.69 2.16

FLORsst 3.59 3.56 3.09 3.46 2.88 2.47 2.40

FLORsst1strat 3.98 3.89 2.95 2.62 3.39 3.57 2.26

FIG. 10. Ensemble-mean subseasonal frequency of occurrence for each weather type, smoothed with an 11-day

moving average. Periods in the black boxes were selected for further analysis (see section 5c).
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simulated frequencies are similar to the other time

scales analyzed in this work (interannual and decadal),

although LOARsst exhibits higher and similar disper-

sions at subseasonal scale than at the other scales.

d. Interannual variability

Analysis of the ensemble-mean interannual evolution

of the frequency of weather types, shown in Fig. 11, in-

dicates that the highest root-mean-square errors, pre-

sented in Table 6, occur for patterns associated with

troughs north of the Great Lakes (WT4), especially for

LOARsst (;11.7 days per season, compared to ;10.0

and ;9.8 days for FLORsst and FLORsst1strat, re-

spectively). On the other hand, WT3 and WT7—

northeastern seaboard ridges and deep troughs—have

the best average representation of the interannual

variability in all experiments, with slightly lower er-

rors for LOARsst and FLORsst1strat (;5.1 days for

bothWT3 andWT7 in both experiments, compared to

;6 days for the same weather types in FLORsst).

Nonetheless, on average, there are no statistically

significant differences (p, 0:05, using a two-sample

Student’s t test) between the experiments, with an

overall median error of 7.3 days, which is lower than

10% of the total days in the season. This result is

consistent with the scatter index values for the

mean frequency of occurrence at interannual scales

(Fig. 6a).

The variability in the frequencies—measured by the

associated standard deviation—is, again, very similar

between the experiments. Moreover, the fact that there

is relatively low dispersion in the variability scatter

index for almost all time scales (Fig. 6b) implies

agreement between the different members in each

numerical experiment, suggesting low model un-

certainty in the reported values of this parameter.

Nonetheless, overall Fig. 11 suggests that the experi-

ments do not seem to capture well the observed in-

terannual variability.

FIG. 11. (a) Observed and (b)–(d) ensemble-mean interannual frequency of occurrence for each weather type (see

label bar), for all MAM seasons.

TABLE 6. Ensemble-mean RMSE (in days per season) for the

interannual evolution of the frequency of occurrence of the

weather types in each experiment, with respect to NNRPv2.

Experiment WT1 WT2 WT3 WT4 WT5 WT6 WT7

LOARsst 7.4 7.3 5.1 11.7 10.2 7.9 5.2

FLORsst 7.4 6.4 6.2 10.0 7.7 7.1 5.7

FLORsst1strat 6.6 6.9 5.0 9.8 7.1 7.8 5.1
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e. Decadal differences

There are not enough years to formally study inter-

decadal variability, and thus only the differences in the

frequency of occurrence of weather types were analyzed

for the first and last decades, after smoothing the fre-

quency of occurrence time series using an 11-yr moving

average, to pick up the long-time-scale signals of interest

in the present analysis.

Differences in medians and dispersions of the mean

frequency of occurrence are negligible for the two de-

cades (Fig. 6a), although dispersion in the simulated

mean frequencies of occurrence are definitively higher

in the FLOR experiments than in LOARsst for the 1981–

90 decade. FLORsst and FLORsst1strat show slightly

lower medians for the scatter index of the standard de-

viations for the 2003–12decade, although with higher

dispersions than LOARsst. Overall, both decades show

the same ranges and values for the statistics considered.

6. Discussion

The approach presented here offers tailored di-

agnostics to understand possible sources of model biases

at multiple time scales. The basic idea is that the in-

herent biases at the synoptic or low-frequency variabil-

ity scale in models could be rectified at larger scales,

according to how climate drivers excite the observed

weather types differentially on longer subseasonal-to-

seasonal and seasonal-to-decadal scales. A variety of

diagnostic metrics were explored to identify model er-

rors at several time scales. Nonetheless, putting together

the big picture provided by the different metrics is in

general not a trivial task.

The analysis performed indicates that, at large scale, the

simulations have trouble representing the observed spa-

tial pattern associated with WT3 (Table 2), although at

regional scale—over NENA—the spatial configuration of

the northeastern seaboard ridges is actually good enough

to provide a fair representation of the observed rainfall

regimes (Table 3), suggesting that the observed physical

mechanisms that control rainfall in that case (e.g., mois-

ture and heat transport from the Gulf of Mexico; Fig. 4)

are present in the simulations. This has important impli-

cations for flood prediction in the Ohio River basin

(Nakamura et al. 2013; Robertson et al. 2015).

In contrast, the lowest rainfall pattern correlations are

obtained for the regime associated with troughs north of

the Great Lakes (RR4, WT4; see Table 3), attributed

earlier to the southward displacement of the geopotential

anomaly with respect to the observed pattern, and its

enhancement over most of North America. This is truly

theworst circulation regime simulated in the experiments.

Not only is the spatial pattern poorly simulated, but also

the depiction of the observed temporal variability across

all time scales is the worst of all WTs. These issues are

hypothesized here to be part of the same pathology, and

they could be related to problems in themodels’ rendition

of tropical–extratropical interactions, as the seasonal

frequency of occurrence ofWT4 is significantly correlated

with the Niño-3.4 SST index (not shown), a link that will

be treated—along with other teleconnection indices and

circulation regimes—in a future paper, following the

methodology discussed in Muñoz et al. (2015).
The other weather regimes have a fair representation

of the geopotential anomalies and rainfall patterns over

NENA, although this is not necessarily true at the con-

tinental or hemispheric scale.

Altogether, there are not significant differences in the

average performance of LOAR and FLOR in terms of

the reproduction of the spatial patterns and temporal

variability of the observed weather types, although a

certain experiment can be better than the others when

considering particular characteristics (e.g., mean fre-

quency at interannual scale, or the persistence of WT4;

see section 5). In this work, the question of which model

is better is really a question of what nudging approach

performs better and what is the impact of horizontal

resolution.

Nudging both SST and stratospheric fields did not

consistently improve the representation of the weather

types in the model, and indeed in some cases provided

worse results than the SST-only nudging experiment

(FLORsst). It is possible that some stratosphere–

troposphere and ocean–atmosphere interactions are

not being well simulated, and that some improvement

can be achieved if the vertical resolution in the model is

increased to adequately account for the stratospheric

processes. This is a matter of future research.

As indicated earlier, no significant improvement was

found when increasing horizontal resolution, either in

the reanalysis products or in the model experiments

(LOARsst and FLORsst). This is attributed to the fact

that synoptic-scale 500-hPa geopotential height anom-

alies do not really require high resolution in order to

reproduce the key physical mechanisms associated with,

for example, propagation of Rossby waves that perturbs

circulation patterns, or the moisture advection condu-

cive to rainfall; in addition, the topography in NENA is

not tall or complex enough as to negatively impact the

low-resolution model. Yet, high horizontal resolution

could be important in other regions of the world.

Although high spatial resolution does not seem to be

necessary to satisfactorily reproduce observed weather

types, high-resolution models like FLOR have the ad-

vantage of providing physically related variables like
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rainfall or surface temperature at a resolution preferred

by decision-makers and for the provision of climate

services (Vaughan and Dessai 2014). Nonetheless, it is

possible to exploit the fair representation of weather

type characteristics by faster coupled models like

LOAR to ‘‘reconstruct’’ fields of interest (e.g., the

rainfall climatology in NENA).

Since the rainfall climatology hpi can be computed

in terms of a linear combination of rainfall regimes

RRi and the total frequency of occurrence of those re-

gimes Fi,

hpi5 �
k

i

F
i
RR

i
(10)

for i5 1 . . . k regimes, if the model has an adequate

representation of only one of these fields, then obser-

vations could be used to compute the other factor in the

linear combination. For example, the rainfall regimes of

the experiments analyzed in this work (ModRR) could

be used in conjunction with the observed frequencies of

occurrences (ObsF) to reconstruct the observed rainfall

climatology, as shown in Figs. 12a and 12b. For other

approaches that can be used for prediction purposes, see

Moron et al. (2008b).

As expected, the experiments with FLOR provide

better spatial rainfall patterns than LOARsst because of

their higher resolution. Although there are biases, the

use of the observed frequency of occurrences has im-

proved the original simulated rainfall climatologies

(Figs. 2b–d). Further improvement is obtained if the

observed rainfall regimes (ObsRR) are used in con-

junction with the modeled frequencies (ModF; Fig. 12c).

With a satisfactory bias-correctionmethod, this approach

has the potential to provide relatively economic—at least

from a computational point of view—diagnostic products

and forecasts.

7. Concluding remarks

This work discussed a new diagnostic framework to

evaluate the performance of models across multiple

time scales, based on their representation of the ob-

served spatial and temporal variability of weather types.

Under this nonlinear system dynamics perspective,

‘‘good’’ models are those that correctly reproduce the

FIG. 12. (a) Observed rainfall climatology (MAM 1981–2012), and reconstruction of the rainfall climatology using, for each numerical

experiment, and linear combinations of (b) the observed frequencies of occurrence of weather types (ObsF) and the modeled rainfall

regimes (ModRR) and (c) the modeled frequencies of occurrence of weather types (ModF) and the observed rainfall regimes (ObsRR).

Units in mmday21. Ocean has been masked in (b). Each dataset is plotted using its native horizontal resolution.
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observed characteristics of the weather types at multiple

time scales.

The framework takes advantage of the weather-

typing decomposition, in terms of the spatial patterns

of the circulation regimes and their temporal evolution,

to analyze model performance at multiple time scales

focusing on the evaluation of tailored statistics like daily

transition probabilities, weather type mean durations,

and subseasonal, interannual, and longer-term fre-

quencies of occurrence. Furthermore, since the circu-

lation regimes are normally linked to concrete climate

modes, they can also be used to diagnose model biases

from a physical perspective, like deformations or dis-

placements of particular geopotential height configu-

rations that control the occurrence of rainfall in a region

of the world.

To illustrate how the diagnostic approach works, it was

applied to three different sets of numerical experiments

using Geophysical Fluid Dynamics Laboratory coupled

circulationmodels. The simulations tend to represent well

the location, shape, and magnitude of daily circulation

regimes and associated rainfall patterns, although some

important biases were reported and discussed. Further

research is being conducted to perform an in-depth

analysis of possible tropical–extratropical interactions

that might not be well represented by the models.

Finally, the present framework can also be used for

model intercomparison, and can be applied to uncou-

pled and regional models.
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